Trigonometry

Taimur

September 28, 2014

Abstract

* You should attempt to prove every theorem or identity provided. Do not simply memorize the formulas becuase there is a lot to absorb. If you successfully come up with the proof, you will be able to derive the formulas whenever.

1 Basic Definitions

You are most likely already familiar with these definitions (at least I hope so). $\sin x=\frac{\text { opposite }}{\text { hypotenuse }}, \cos x=\frac{\text { adjacent }}{\text { hypotenuse }}$, and $\tan x=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sin x}{\cos x}$. These definitions only apply in a right triangle. There are also functions defined as the reciprocal functions of the aforementioned. $\csc x=\frac{1}{\sin x}, \sec x=\frac{1}{\cos x}$, and $\cot x=\frac{1}{\tan x}$.

2 Special Right Triangles

In certain right triangles the trigonometric functions of the angles come out to very nice numbers. They go as follows: $\sin 30^{\circ}=\frac{1}{2}, \sin 60^{\circ}=\frac{\sqrt{3}}{2}$, etc... (You should know these as well)

3 Inverse Functions

You learned what sin, cos, and tan were. So now lets move on to their inverse functions. $\sin ^{-1} x$ or $\arcsin x$ means the angle whose sin is equivalent to x. The same goes for cos and tan.

4 Trigonometric Identities

Firstly you should be familiar with the following: $\cos (180-x)=-\cos x$, $\sin (180-x)=\sin x$, and $\sin (90-x)=\cos x$. Now let's talk about some more complex identities. By constructing figures and performing some algebra, we can come up with the following identities: $\sin ^{2} x+\cos ^{2} x=1, \tan ^{2} x+1=\sec ^{2} x$, and $\cot ^{2} x+1=\csc ^{2} x$. These are known as the Pythagorean Identities. Then
there are addition and subtraction identities.
$\sin (a \pm b)=\sin a \cos b \pm \sin b \cos a$
$\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$
$\tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$
Some other identities derived from the addition identities are:
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$ (Use the pythagorean identities to come up with the 2 alternative forms of this.)
*For further exploitation of the angle formulas, such as $\sin 3 x$, simply use the addition formulas with $2 x$ and x as angles.

5 Law of Cosines

In $\triangle A B C$, let the sides opposite to angles A, B, and C be a, b, and c respectively. Then the Law of Cosines states: $a^{2}+b^{2}-2 a b \cos C=c^{2}$. Where the variables are interchangeable.

6 The Extended Law of Sines

Considering the same triangle as in the Law of Cosines, we have the following equivalance: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$, where R is the radius of the circumcircle of $\triangle A B C$.

7 Other Useful Theorems

(Remember to prove)

1. $\frac{a b c}{4 R}=[A B C]$
2. $\frac{1}{2} a b \sin C=[A B C]$
3. $a=b \cos C+c \cos B$
4. $a(\sin B-\sin C)+b(\sin A-\sin C)+c(\sin A-\sin B)=0$

8 Complex Number Representations

Any number you can think of can be expressed as $r(\cos x+i \sin x)$, or in shorthand $r(c i s x)$. Expressing numbers in this way leads to many uses because the complex number i has a lot of interesting properties.
De Moivre's Theorem

$$
[r(\cos x+i \sin x)]^{n}=r^{n}[\cos (x n)+i \sin (x n)]
$$

9 Problems

1. If $\sec x-\tan x=2$, compute $\sec x+\tan x$.
2. Compute
(a) $\sin \frac{\pi}{12}, \cos \frac{\pi}{12}$, and $\tan \frac{\pi}{12}$.
(b) $\cos ^{4} \frac{\pi}{24}-\sin ^{4} \frac{\pi}{24}$
(c) $\cos 36^{\circ}-\cos 72^{\circ}$
(d) $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$
3. Simplify the expression.
$\sqrt{\sin ^{4} x+4 \cos ^{2} x}-\sqrt{\cos ^{4} x+4 \sin ^{2} x}$.
4. Prove that $\csc \frac{180}{7}^{\circ}=\csc {\frac{360^{\circ}}{7}}^{\circ}+\csc {\frac{540^{\circ}}{7}}^{\circ}$.
5. In $\triangle A B C, \angle C=3 \angle A$. If $B C=27$ and $A B=48$, find $A C$.
6. Show that $\cot 10^{\circ}-4 \cos 10^{\circ}=\sqrt{3}$.
7. Compute $10 \cot \left(\cot ^{-1} 3+\cot ^{-1} 7+\cot ^{-1} 13+\cot ^{-1} 21\right)$.
8. Find the radius of the inscribed circle of $\triangle A B C$ if $\cos ^{2} \frac{A}{2}=\frac{b+c}{2 c}=\frac{9}{10}$, $c=5$.
9. In $\triangle A B C, B C=a, C A=b$, and $A B=c$. If $9 a^{2}+9 b^{2}-19 c^{2}=0$, find the value of $\frac{\cot C}{\cot A+\cot B}$.
10. In $\triangle A B C$, the length of the sides opposite to angles A, B, and C are a, b, and c respectively. The area of triangle $A B C$ is equal to $a^{2}+b^{2}-c^{2}$. If $\angle C$ is acute, compute the numerical value of its secant, where a, b, and c are positive real numbers.
11. Isosceles $\triangle A B C$ has a right angle at C. Point P is inside the triangle such that $P A=11, P B=7$, and $P C=6$. Legs $A C$ and $B C$ have length $s=\sqrt{a+b \sqrt{2}}$, where a and b are positive integers. What is $a+b$?
12. A circle centered at O has radius 1 and contains the point A. Segment $A B$ is tangent to the circle at A and $\angle A O B=\theta$. If point C lies on $O A$ and $B C$ bisects $\angle A B O$, then express $O C$ in terms of θ.
13. Find the value of $\beta+\frac{\alpha}{2}$ if $3 \sin \alpha=2 \sin \beta$ and $3 \cos \alpha+2 \cos \beta=3$. Where both α and β are acute angles.
14. In a triangle with sides of lengths a, b, and $c,(a+b+c)(a+b-c)=3 a b$. If $\sin ^{2} A=\sin ^{2} B+\sin ^{2} C$, then the three interior angles of $\triangle A B C$ are?
15. If $z+\frac{1}{z}=2 \cos 3$, then compute $\left\lfloor z^{2006}+\frac{1}{z^{2006}}\right\rfloor$.
16. In $\triangle A B C, A B=360, B C=507$, and $C A=780$. Let M be the midpoint of $C A$, and let D be the point on $C A$ such that $B D$ bisects angle $A B C$. Let F be the point on $B C$ such that $D F \perp B D$. Suppose that $D F$ meets $B M$ at E. The ratio $D E: E F$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
17. In $\triangle A B C$, if $\sin A-2 \sin B \cos C=0$, then what must be true about $\triangle A B C$? (i.e it is a right triangle, it is equilateral, etc...)
18. $B C$ is a diameter of circle $O . A C$ is tangent to O at $C . A C=B C$. Draw $C E$ perpendicular to $A O$ to meet $A O$ at F, and $A B$ at E. Show that $A E=2 B E$.
19. In triangle $A B C, 3 \sin A+4 \cos B=6$ and $4 \sin B+3 \cos A=1$. Then $\angle C$ in degrees is?
20. In a triangle with sides of length a, b, and $c,(a+b+c)(a+b-c)=3 a b$. The measure of the angle opposite the side of length c is?
