Trigonometry

Taimur

September 28, 2014

* You should attempt to prove every theorem or identity provided. Do not simply memorize the formulas because there is a lot to absorb. If you successfully come up with the proof, you will be able to derive the formulas whenever.

1 Basic Definitions

You are most likely already familiar with these definitions (at least I hope so). $\sin x = \frac{opposite}{hypotenuse}$, $\cos x = \frac{adjacent}{hypotenuse}$, and $\tan x = \frac{opposite}{adjacent} = \frac{\sin x}{\cos x}$. These definitions only apply in a right triangle. There are also functions defined as the reciprocal functions of the aforementioned. $\csc x = \frac{1}{\sin x}$, $\sec x = \frac{1}{\cos x}$, and $\cot x = \frac{1}{\tan x}$.

2 Special Right Triangles

In certain right triangles the trigonometric functions of the angles come out to very nice numbers. They go as follows: $\sin 30^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$, etc... (You should know these as well)

3 Inverse Functions

You learned what sin, cos, and tan were. So now lets move on to their inverse functions. $\sin^{-1} x$ or $\arcsin x$ means the angle whose sin is equivalent to x. The same goes for cos and tan.

4 Trigonometric Identities

Firstly you should be familiar with the following: $\cos(180 - x) = -\cos x$, $\sin(180 - x) = \sin x$, and $\sin(90 - x) = \cos x$. Now let's talk about some more complex identities. By constructing figures and performing some algebra, we can come up with the following identities: $\sin^2 x + \cos^2 x = 1$, $\tan^2 x + 1 = \sec^2 x$, and $\cot^2 x + 1 = \csc^2 x$. These are known as the *Pythagorean Identities*. Then

there are *addition* and *subtraction* identities. $\sin(a \pm b) = \sin a \cos b \pm \sin b \cos a$

 $\cos\left(a\pm b\right) = \cos a \cos b \mp \sin a \sin b$

 $\tan\left(a\pm b\right)=\frac{\tan a\pm \tan b}{1\mp \tan a \tan b}$

Some other identities derived from the addition identities are: $\sin 2x = 2 \sin x \cos x$

 $\cos 2x = \cos^2 x - \sin^2 x$ (Use the pythagorean identities to come up with the 2 alternative forms of this.)

*For further exploitation of the angle formulas, such as $\sin 3x$, simply use the addition formulas with 2x and x as angles.

5 Law of Cosines

In $\triangle ABC$, let the sides opposite to angles A, B, and C be a, b, and c respectively. Then the Law of Cosines states: $a^2 + b^2 - 2ab \cos C = c^2$. Where the variables are interchangeable.

6 The Extended Law of Sines

Considering the same triangle as in the Law of Cosines, we have the following equivalance: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, where R is the radius of the circumcircle of $\triangle ABC$.

7 Other Useful Theorems

(Remember to prove)

1.
$$\frac{abc}{4R} = [ABC]$$

- 2. $\frac{1}{2}ab\sin C = [ABC]$
- 3. $a = b \cos C + c \cos B$
- 4. $a(\sin B \sin C) + b(\sin A \sin C) + c(\sin A \sin B) = 0$

8 Complex Number Representations

Any number you can think of can be expressed as $r(\cos x + i \sin x)$, or in shorthand r(cisx). Expressing numbers in this way leads to many uses because the complex number *i* has a lot of interesting properties. **De Moivre's Theorem**

 $[r(\cos x + i\sin x)]^n = r^n [\cos(xn) + i\sin(xn)]$

9 Problems

- 1. If $\sec x \tan x = 2$, compute $\sec x + \tan x$.
- 2. Compute
 - (a) $\sin \frac{\pi}{12}$, $\cos \frac{\pi}{12}$, and $\tan \frac{\pi}{12}$.
 - (b) $\cos^4 \frac{\pi}{24} \sin^4 \frac{\pi}{24}$
 - (c) $\cos 36^{\circ} \cos 72^{\circ}$
 - (d) $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$
- 3. Simplify the expression. $\sqrt{\sin^4 x + 4\cos^2 x} - \sqrt{\cos^4 x + 4\sin^2 x}.$
- 4. Prove that $\csc \frac{180}{7}^{\circ} = \csc \frac{360}{7}^{\circ} + \csc \frac{540}{7}^{\circ}$.
- 5. In $\triangle ABC$, $\angle C = 3 \angle A$. If BC = 27 and AB = 48, find AC.
- 6. Show that $\cot 10^{\circ} 4 \cos 10^{\circ} = \sqrt{3}$.
- 7. Compute $10 \cot(\cot^{-1} 3 + \cot^{-1} 7 + \cot^{-1} 13 + \cot^{-1} 21)$.
- 8. Find the radius of the inscribed circle of $\triangle ABC$ if $\cos^2 \frac{A}{2} = \frac{b+c}{2c} = \frac{9}{10}$, c = 5.
- 9. In $\triangle ABC$, BC = a, CA = b, and AB = c. If $9a^2 + 9b^2 19c^2 = 0$, find the value of $\frac{\cot C}{\cot A + \cot B}$.
- 10. In $\triangle ABC$, the length of the sides opposite to angles A, B, and C are a, b, and c respectively. The area of triangle ABC is equal to $a^2 + b^2 c^2$. If $\angle C$ is acute, compute the numerical value of its secant, where a, b, and c are positive real numbers.
- 11. Isosceles $\triangle ABC$ has a right angle at C. Point P is inside the triangle such that PA = 11, PB = 7, and PC = 6. Legs AC and BC have length $s = \sqrt{a + b\sqrt{2}}$, where a and b are positive integers. What is a + b?

- 12. A circle centered at O has radius 1 and contains the point A. Segment AB is tangent to the circle at A and $\angle AOB = \theta$. If point C lies on OA and BC bisects $\angle ABO$, then express OC in terms of θ .
- 13. Find the value of $\beta + \frac{\alpha}{2}$ if $3 \sin \alpha = 2 \sin \beta$ and $3 \cos \alpha + 2 \cos \beta = 3$. Where both α and β are acute angles.
- 14. In a triangle with sides of lengths a, b, and c, (a+b+c)(a+b-c) = 3ab. If $\sin^2 A = \sin^2 B + \sin^2 C$, then the three interior angles of $\triangle ABC$ are?

15. If
$$z + \frac{1}{z} = 2\cos 3$$
, then compute $\lfloor z^{2006} + \frac{1}{z^{2006}} \rfloor$.

- 16. In $\triangle ABC$, AB = 360, BC = 507, and CA = 780. Let M be the midpoint of CA, and let D be the point on CA such that BD bisects angle ABC. Let F be the point on BC such that $DF \perp BD$. Suppose that DF meets BM at E. The ratio DE : EF can be written in the form $\frac{m}{n}$, where mand n are relatively prime positive integers. Find m + n.
- 17. In $\triangle ABC$, if $\sin A 2\sin B\cos C = 0$, then what must be true about $\triangle ABC$? (i.e it is a right triangle, it is equilateral, etc...)
- 18. BC is a diameter of circle O. AC is tangent to O at C. AC = BC. Draw CE perpendicular to AO to meet AO at F, and AB at E. Show that AE = 2BE.
- 19. In triangle ABC, $3\sin A + 4\cos B = 6$ and $4\sin B + 3\cos A = 1$. Then $\angle C$ in degrees is?
- 20. In a triangle with sides of length a, b, and c, (a + b + c)(a + b c) = 3ab. The measure of the angle opposite the side of length c is?