Synthetic solution by using equilateral triangles

Matthew Fan

June 1, 2015

There are some geometry problems in which observation tells you to use angle chasing but somehow you cannot manage to find an answer.

1 Example

We have a triangle ABC.D is a point on side AC and E is a point on side BC such that $\angle CAE = 20^{\circ}, \angle EAB = 60^{\circ}, \angle DBA = 50^{\circ}, \angle DBC = 30^{\circ}$. Find $\angle DEA$

Note that after some angle chasing (in which you have to do on your own), you will not be able to find $\angle DEA$ although you know that it have some particular value since D, E are fixed points with respect to ABC.

2 Introduction

Today, I am going to show you how equilateral triangles can be applied effectively in questions that seem to not work under angle-chase.

1) Firstly, I will talk about why they are useful. Equilateral triangles have two properties that are equivalent: All angles are 60° and all sides have the same length. If we known one such condition exists, then we can use the other one.

2) Now, I display some of my methods that I use to construct equilateral triangles to help me.

i) Find a 60° angle. Contruct a equilateral triangle from it. For example, If we have a 40°, 60°, 80°, then we dissect the 80° angle into a 60° and a 20° triangle.
ii) If you have a 30° angle, flip it over one of the adjacent sides and you will get case i)

iii) If you do not have a 30° nor a 60° angle, try to make one.

3 Solving our example

We have a triangle ABC.D is a point on side AC and E is a point on side BC such that $\angle CAE = 20^{\circ}, \angle EAB = 60^{\circ}, \angle DBA = 50^{\circ}, \angle DBC = 30^{\circ}$. Find $\angle DEA$.

Solution: Construct the point F on BC such that $\angle FAB = 20^{\circ}$.

Then $\angle AFB = 80^{\circ} = \angle ABF$ so AF = AB. Note that AD = AB = AF and $\angle DAF = 60^{\circ}$ so $\triangle DAF$ is equilateral.

 $\angle EAF = \angle EAB - \angle FAB = 40^\circ = \angle AEB$ so DF = AF = EF so $\angle DEF = \frac{180^\circ - 40^\circ}{2} = 70^\circ$ so $\angle DEA = 30^\circ$.

4 Practice

1) In triangle ABC, $\angle A = 40^{\circ}$, $\angle B = 60^{\circ}$. The bisector of $\angle A$ cuts BC at D. F is a point on AB such that $\angle ADF = 30^{\circ}$. What is the measure of $\angle DFC$?.

2) P is a point inside triangle ABC such that $\angle PBC = 30^{\circ}$, $\angle PBA = 8^{\circ}$ and $\angle PAB = \angle PAC = 22^{\circ}$. Find $\angle APC$