Synthetic solution by using equilateral triangles

Matthew Fan

June 1, 2015

There are some geometry problems in which observation tells you to use angle chasing but somehow you cannot manage to find an answer.

1 Example

We have a triangle $A B C \cdot D$ is a point on side $A C$ and E is a point on side $B C$ such that $\angle C A E=20^{\circ}, \angle E A B=60^{\circ}, \angle D B A=50^{\circ}, \angle D B C=30^{\circ}$. Find $\angle D E A$

Note that after some angle chasing (in which you have to do on your own), you will not be able to find $\angle D E A$ although you know that it have some particular value since D, E are fixed points with respect to $A B C$.

2 Introduction

Today, I am going to show you how equilateral triangles can be applied effectively in questions that seem to not work under angle-chase.

1) Firstly, I will talk about why they are useful. Equilateral triangles have two properties that are equivalent: All angles are 60° and all sides have the same length. If we known one such condition exists, then we can use the other one.
2) Now, I display some of my methods that I use to construct equilateral triangles to help me.
i) Find a 60° angle. Contruct a equilateral triangle from it. For example, If we have a $40^{\circ}, 60^{\circ}, 80^{\circ}$, then we dissect the 80° angle into a 60° and a 20° triangle. ii) If you have a 30° angle, flip it over one of the adjacent sides and you will get case i)
iii) If you do not have a 30° nor a 60° angle, try to make one.

3 Solving our example

We have a triangle $A B C . D$ is a point on side $A C$ and E is a point on side $B C$ such that $\angle C A E=20^{\circ}, \angle E A B=60^{\circ}, \angle D B A=50^{\circ}, \angle D B C=30^{\circ}$. Find $\angle D E A$.

Solution: Construct the point F on $B C$ such that $\angle F A B=20^{\circ}$.
Then $\angle A F B=80^{\circ}=\angle A B F$ so $A F=A B$. Note that $A D=A B=A F$ and $\angle D A F=60^{\circ}$ so $\triangle D A F$ is equilateral.
$\angle E A F=\angle E A B-\angle F A B=40^{\circ}=\angle A E B$ so $D F=A F=E F$ so $\angle D E F=$ $\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$ so $\angle D E A=30^{\circ}$.

4 Practice

1) In triangle $A B C, \angle A=40^{\circ}, \angle B=60^{\circ}$. The bisector of $\angle A$ cuts $B C$ at D. F is a point on $A B$ such tha $\mathrm{t} \angle A D F=30^{\circ}$. What is the measure of $\angle D F C$?
2) P is a point inside triangle $A B C$ such that $\angle P B C=30^{\circ}, \angle P B A=8^{\circ}$ and $\angle P A B=\angle P A C=22^{\circ}$. Find $\angle A P C$
