Simon's Favorite Factoring Trick

Eugenis

May 31, 2015

1 Introduction

Simon's Favorite Factoring Trick (SFFT) is a direct application of grouping that is used to solve many problems. We will begin with some trivial problems that use SFFT directly, into some more advanced Olympiad problems. I will leave the Olympiad problems for the reader to solve. Instead of simply explaining SFFT in generally terms, I will introduce the technique through an assortment of problems, varying in difficulty.

1.1 Exercises

Exercise 1. Factor $x y+x+y$ as the product of two binomials \pm a constant.
Solution 1. Let us first pull out a x term out of the first two terms. This factors as

$$
x(y+1)+y
$$

Note that we can factor by grouping if and only if we had another $y+1$ term. By wishful thinking, we find this is indeed achievable. By adding and subtracting a positive 1 to the expression, we can factor by grouping.

$$
x(y+1)+1(y+1)-1=(x+1)(y+1)-1
$$

Our desired result is $(x+1)(y+1)-1$.
Exercise 2. Factor $4 x y+6 x+10 y$ by Simon's Favorite Factoring Trick (SFFT).
Solution 2. As done previously, let us pull out a x term out of the first two terms. This factors as

$$
x(4 y+6)+10 y
$$

However note that it is not currently possible to create another $2 y+1$ term. Clearly the problem is where the $x y$ coefficient was not equal to 1 . This is extremely valuable advice when trying to use SFFT; we want the coefficient of the $x y$ term to be equal to 1 . Using that advice, let us redo the problem. We need to pull out a factor of 4 out of all the terms. This yields

$$
4\left(x y+\frac{3}{2} x+\frac{5}{2} y\right)
$$

Using wishful thinking as seen previously, this factors as

$$
4\left(\left(x+\frac{5}{2}\right)\left(y+\frac{3}{2}\right)-\frac{15}{4}\right)
$$

Cleaning the problem up by distributing yields

$$
(2 x+5)(2 y+3)-15
$$

2 Challenge Problems

Problem 1 [2007 AMC 12] How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to 3 times their perimeters?

Problem 2 [1998 AIME] An $m \times n \times p$ rectangular box has half the volume of an $(m+2) \times(n+2) \times(p+2)$ rectangular box, where m, n, and p are integers, and $m \leq n \leq p$. What is the largest possible value of p ?

Problem 3 [2005 BMO] The integer N is positive. There are exactly 2005 ordered pairs (x, y) of positive integers satisfying:

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{N}
$$

Prove that N is a perfect square.
Problem 4 [2003 JBMO] Let n be a positive integer. A number A consists of $2 n$ digits, each of which is 4 ; and a number B consists of n digits, each of which is 8 . Prove that $A+2 B+4$ is a perfect square.

Problem 5 [2000 AIME] The system of equations

$$
\begin{aligned}
\log _{10}(2000 x y)-\left(\log _{10} x\right)\left(\log _{10} y\right) & =4 \\
\log _{10}(2 y z)-\left(\log _{10} y\right)\left(\log _{10} z\right) & =1 \\
\log _{10}(z x)-\left(\log _{10} z\right)\left(\log _{10} x\right) & =0
\end{aligned}
$$

has two solutions $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$. Find $y_{1}+y_{2}$.

