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1 Introduction

Pythagorean triples are integer solutions to the well known Pythagorean theo-
rem, a2 + b2 = c2. Although it is a geometrical theorem, the part that the sum
of two squares is another square is a number theory problem. In this article, we
will develop a formula for a subset of these triples, and then find a formula for
all Pythagorean triples. There will be challenge questions at the end of most
both sections, going over topics similar to that of the section.

2 Leg and hypotenuse differ by 1

In other words, this section is about c − b = 1, where b > a. First to develop
a formula for these triples, we look at examples of them. here are the first few
examples of them, (3,4,5) (5,12,13), (7,24,25), (9,40,41). First, we look at parity.
We always have (odd, even, odd). This is always true, which you will prove as
an exercise. To start giving these numbers variables, call the even leg 2x, and
the hypotenuse 2x + 1. Also the other leg will be y for now, as we do not know
what it is in terms of x yet. Using the Pythagorean theorem, we find what y is
in terms of x.

y2 + (2x)2 = (2x + 1)2

y2 = 4x + 1

y =
√

4x + 1

Now our triple is (
√

4x + 1,2x,2x+1). However,
√

4x + 1 is not always an inte-
ger. We need 4x + 1 to equal an odd perfect square, or 4x + 1 = (2c + 1)2. We
now solve for x.

4x + 1 = 4c2 + 4c + 1

x = c2 + c = c(c + 1)

Plugging this into our triple, we now get (2c+ 1, 2c2 + 2c, 2c2 + 2c+ 1). Just to
make sure our formula works, we plug this into the Pythagorean theorem.

(2c+1)2+(2c2+2c)2 = 4c2+4c+1+4c4+8c3+4c2 = 4c4+8c3+8c2+4c+1 = (2c2+2c+1)2

The most interesting part of this formula is that the smallest leg squared is
equal to the sum of the larger leg and hypotenuse. This formula also shows that
any odd number greater than 1 is in a Pythagorean triple because of the 2c+ 1
term. combining these two, we can easily make a triple with any odd number.
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For example, lets say one of our legs is 13. The square of 13, 169, is the sum
of the leg and hypotenuse. Also, in this formula, we have the hypotenuse is 1
larger than the large leg. Call the large leg x, we have x+x+1 = 169 or x = 84.
This means our triple is (13,84,85). Remember, we can only do this when we
want our leg and hypotenuse to be 1 apart.

2.1 Challenge Problems

1. Prove that if the hypotenuse and large leg of a right triangle differ by 1,
the small leg is odd, large leg is even, and hypotenuse is odd.

2. With our formula for these kind of triples, find a recurrence formula for
the large leg. *Hint, Let the formula for the large leg be f(c), Find out
what y is in terms of c in f(c) = f(c− 1) + y*

3. Find the triple with smallest leg 23.

3 General case

Now that we have some intuition, lets try the harder problem, finding the general
case. The key part is making observations. Lets look at some Pythagorean
triples to find some pattern. Without loss of generalization, say in the triple
(a,b,c) we have a and c odd with b even. We notice a − c is always double a
perfect square. Also, we notice that b is divisible by the square root of that
perfect square. Now our triple is (x− y2, 2zy, x+ y2) for some natural numbers
z, x and y. Now we use the Pythagorean theorem.

(x− y2)2 + 4z2y2 = (x + y2)2

4z2y2 = (x + y2)2 − (x− y2)2 = (2x)(2y2)

z2 = x

So now our triple is (z2−y2, 2zy, z2 +y2) and we have discovered a general form
for Pythagorean triples.

3.1 Challenge questions

1. This does not look like our formula for where the leg and hypotenuse differ
by 1. Prove that they give the same values.

2. A primitive Pythagorean triple is one where the gcd(a, b, c = 1). Find
what constraints on y and z we need to have our general Pythagorean
triple output primitive Pythagorean triples.

3. Derive a similar formula for quadruples (a,b,c,d) where a2 + b2 + c2 = d2

4. Generalize your results from above even further by finding a n-tuple such
that a20 + a21 + ...a2n−1 = a2n

5. An integer which is the area of a right angled triangle with integer sides is
called a Pythagorean. Prove that for every positive integer n > 12 there
exists a Pythagorean number between n and 2n. (Korea Math Olympiad
1993)
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